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Phase behavior of liquid crystals confined by smooth walls
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Monte Carlo simulations for a simple model liquid crystal are presented. The influence of flat walls on the
phase behavior is analyzed for two different anchoring mechanisms, one favoring homeotropic alignment and
one simulating a twisted nematic cell without external fields, e.g., two walls with different homogeneous planar
alignment. The simulations are performed in the constant pressure ensemble. The box volume may change in
the directions perpendicular to the wall normal. The isotropic-nematic phase transition in the bulk system is
first studied for different isobars. For the weak first order transition we do not observe any hysteresis down to
a temperature accuracy ofDT50.001. The isothermT51 is then studied in the bulk as well as in the confined
geometries. The walls stabilize the positional order in the systems due to the formation of layers. The orien-
tational order is weakly stabilized.
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I. INTRODUCTION

Liquid crystals are very useful for many applications d
to their dual nature and easy response to surface forces@1#.
In 2002, liquid crystal displays became the most produ
display type world wide. Therefore, the physics of confin
liquid crystals is an important subject from the technologi
point of view. Furthermore, the influence of confinement
the phase behavior of liquid crystals is of high academ
interest. The interplay between bulk and surface forces g
rise to a complex phase behavior. In experiments the c
finement is found to induce capillary condensation@2#.

Until now, there have been many theoretical studies
liquid crystals in restricted geometries with help of both m
lecular simulations@3–15# and density functional theorie
@16–22# or combinations of both@23–25#. Often used inter-
action potentials are the Gay-Berne@26,27# potential
@4–6,8,11#, hard particles with cylindrical symmetr
@10,16,23,25# or a kind of Lebwohl-Lasher@28# model
@3,9,12,13,15#.

For a recently presented simple interaction potential,
bulk phase behavior was determined analytically@29#. In
Monte Carlo simulations@30# these results were confirmed
A nematic phase was observed and the isotropic-nem
phase transition was studied in greater detail for some d
sities. Here, further Monte Carlo studies of this model
carried out. Simulations with confining flat walls reveal t
influence of different kinds of substrates on the phase beh
ior and alignment effects of this model liquid crystal. We u
two different kinds of substrates. The first one is mode
without an orientation dependent wall-particle interacti
which results in homeotropic alignment. The second is m
eled such that both walls prefer homogeneous planar al
ment, but with 90 degrees difference between the azimu
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angles at the walls. The nematic phase is then character
by an inhomogeneous director field, the physics is that o
twisted nematic cell without any orienting field.

This paper proceeds as follows. In Sec. II we briefly
view the interaction potential for the model liquid cryst
fluid and give insight in the fluid-wall interaction, whic
models a smooth wall. Some details of the Monte Ca
simulations, which were carried out each with constant pr
sure and constant temperature, as well as remarks abou
observables, for which average values are obtained are g
in Sec. III. In Sec. IV results of the computer simulations a
presented and discussed. The isotropic-nematic phase tr
tions are studied for two different fluid-wall interaction
leading to different alignments, and are compared with
bulk transition.

II. MODEL SYSTEM

We consider a fluid composed of~effectively! axisymmet-
ric particles whose orientation is characterized by a unit v
tor û parallel to the figure axis. The interaction potent
between two particles located at the positionsr1 andr2 with
orientationsû1 and û2 depends on the three vectorsr5r2
2r1 , û1, and û2. The interaction energy for two fluid par
ticles is written as@29#

F f f~r ,û1 ,û2!54$r 2122r 26@11C~ r̂ ,û1 ,û2!#%, ~1!

where r5r r̂ . Standard Lennard-Jones~LJ! units are used,
i.e., the lengthr and the energyF are expressed in LJ ‘‘di-
ameter,’’ and potential depth, respectively@31#. The anisot-
ropy in the attractive term is described by

C~ r̂ ,û1 ,û2!55«1P2~ û1•û2!15«2@P2~ û1• r̂ !1P2~ û2• r̂ !#.

~2!

Here P2(x)5(3x221)/2 is the second Legendre polynomia
Note thatûj is equivalent to2ûj , so the head-tail symmetry
©2004 The American Physical Society08-1
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is satisfied. In the calculations the potential was cut off a
distancer c53. The anisotropy coefficients« i are chosen to
be «150.04 and«2520.08. In this case the side-side co
figuration is energetically favored, since the side-side in
action potentialF f f

side-side(r )ªF f f(exr ,ez ,ez) has a much
deeper minimum than, for example, the end-end poten
F f f

end-end(r )ªF f f(ezr ,ez ,ez).
We consider our system both in a bulk state and w

walls forming a confined geometry. The boundary conditio
for our system without walls are periodic in all three dire
tions. This means, that a particle at the margin of the sim
lation box can interact with a particle at the opposite side

In simulations with walls we have to change the bound
condition in one direction. If the simulation box has th
edgesdx , dy , anddz , we place two flat walls at the plane
z5z1/256dz/2 parallel to thexy plane. Therefore we do no
apply periodic boundary conditions in thez direction. The
walls consist of particles interacting with fluid particles wi
orientationû at distantr according to a Lennard-Jones typ
potentialf f w(r ,û)54@r 2122r 26gw(û)# with the anchoring
functiongw(û). It is chosen to model the desired alignme
For gw(û)5(û•âw)2 we get homogeneous planar alignme
at the wall with orientations parallel to the unit vectorâw ,
for gw(û)51 we get homeotropic alignment. A twisted nem
atic cell can be modeled using the anchoring functio
g1(û)5ûx

2 andg2(û)5ûy
2 . The fluid-wall potential is cut off

at distancer c53.
Now we could put particles on a lattice in the solid wa

~discrete walls! and let our particles interact pairwise wit
them@8#. Another possibility is much easier and handles
walls continously@4,32,33#. We follow the latter way and
assume a smooth wall with a particle density ofrw . By
integrating the wall-fluid potential over the wallw we get

F f w~r ,û!5rwE
w
f f w~ ir2rwi ,û!d2r w

52prwS 4

10
~z2zw!2102~z2zw!24gw~ û! D ,

~3!

wherer5(x,y,z) is the position of the fluid particle.

III. DETAILS ON THE NPT MONTE CARLO METHOD
FOR THE CONFINED FLUID

A system consisting ofN uniaxial particles, where the
fluid-fluid pair potential is given by Eq.~1! and the fluid-wall
potential is given by Eq.~3!, is considered.

The total potential energy for a configurationGc

[(r1 ,û1 , . . . rN ,ûN) is given as

F tot5(
j 51

N F (
i 5 j 11

N

F f f~r i j ,ûi ,ûj !1 (
w51

2

F f w~r j ,ûj !G ,

~4!

where r i j 5r i2r j . In the simulations up toN51000 par-
ticles were studied at a given temperatureT and a given
03170
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lateral pressurePi . If P is the pressure tensor, thenPi

5 1
2 (Pxx1Pyy) takes into account forces parallel to th

walls. In bulk simulations for isotropic phases, the sca
pressureP5 1

3 (Pxx1Pyy1Pzz) equals the lateral pressur
Pi . For an observableA which depends on the configuratio
only, i.e., A5A(Gc), we can obtain average values in th
NPT ensemble through

^A&'
1

M22M1
(

i 5M111

M2

A~Gi
c!. ~5!

The set of configurations$Gi
c% i 51, . . . ,M2

is produced as fol-
lows according to Metropolis’ algorithm@34#, which is
adapted for the constant pressure ensemble@31,35#: At the
beginning we randomly choose a starting configurationG1

c in
a box of volumeV15dxdydz . The z length must bedz
5zw522zw51. For a given particle we randomly chang
either the orientation or the position. Then we calculate
associated change in energyDF tot and accept the new con
figuration with probability min@1,exp(2DFtot /kBT)#. The
range of the changes in positions is adjusted during the si
lations in order to gain fast convergence to equilibrium. T
rotation angle range for the change of the orientations is
to p/10. The particles are organized in boxes and neigh
lists to save time for calculating particle distances. Neigh
lists must be updated in certain intervals on account of p
ticle diffusion. After all particles have been taken into a
count we try to change the volume. Thereby we keep
distancedz between the walls constant and only changedx
and dy with the same random factorcP(0.995,1.005), i.e.,
dx

new5cdx anddy
new5cdy . The positions of the fluid particles

are scaled accordingly:xnew5cx and ynew5cy. The accep-
tance probability of this volume changeDV5Vnew2Vold is
given through

minH 1,S Vnew

Vold
D N

expS 2
DF tot1PiDV

kBT D J . ~6!

The factor (Vnew/Vold)
N5c2N comes from substitutionssj n

ªr j n /dn and d3r j5Vd3sj in the partition function which
has to be done in order to handle the scaling of the positi
@36,37#. Without this substitution the positions would implic
itly depend on the other integration variable, namely,
volume. The change of potential energyDF tot must be cal-
culated with some caution. The cut off at distancer c should
not lead to the artificial effect that one pair of particles m
be considered for one volume but not for the other~bigger!
one. Therefore, we cut off each pair interaction according
a common criterion 0.5(r old1r new).r c . Finally we arrive at
a new configurationG2

c at volumeV2. After M1 Monte Carlo
steps of this kind we find that our observables fluctu
around some average value. Typical numbers in our sim
tions wereM1510 000 andM25100000 with higher num-
bers in the vicinity of phase transitions.

Quantities calculated are the internal energyE, the energy
fluctuationDE as well as the nematic and smectic order p
rametersS2 and%1, respectively. For the internal energy on
has
8-2
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PHASE BEHAVIOR OF LIQUID CRYSTALS CONFINED . . . PHYSICAL REVIEW E69, 031708 ~2004!
E53NkBT1^F tot&. ~7!

The fluctuation of the internal energy can be cast as

DE5A^F tot
2 &2^F tot&

2, ~8!

becauseN andT are fixed in our simulations.

A. Nematic order parameter

Nematic order is characterized by the so-called Ma
Saupe order parameterS2

MS @38–40# which is the largest ei-
genvalue of the alignment tensor@41# Sª 3

2 ^Q&, where

S25KA3

2
iQi L , ~10!

which we use as nematic order parameter.

B. Smectic order parameter

A smectic order parameter should be sensitive to the
mation of layers. Of course, layers may also occur in so
phases. Any periodicity of the particle density%~r ! should
lead to a high smectic order parameter. Usually, the sme
order parameter%1 is the first coefficient of the Fourier sum
of the particle density

%~r !5%01 (
k51

`

%kcosS 2pkn•r

d
2f D . ~11!

The periodicityd, the layer normaln and the offsetf are
unknown. Forf50 one layer should lie in the origin of th
coordinate system. For a smectic-A phase the layer norma
should be equal to the director and can therefore be extra
from the alignment tensor. But the dependency of%1 on n is
very critical so that these results are not very satisfactor

In the case of walls parallel to thexy plane, however, we
already know the expected layer normaln5ez . Next we can
get rid of the offsetf by calculating the Fourier coefficien
of the complex exponential function rather than that of
cosine. Finally we have
03170
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j 51

N

expS 2p izj

d DU L . ~12!

This was also used@42# as a positional order parameter, m
tivated through the static structure factor. The remain
problem of achieving the periodicityd can be solved by jus
calculating%1(d) in the expected range ofd and then taking
the maximum@43#. Here the range for the expected perio
icity is chosen to bedP@0.7,1.3#.

C. Test of algorithm

To test ourNPT algorithm in the bulk we first simulate
N5800 particles at temperatureT51.4 in a cubic box of
fixed volumeV5103 (NVT ensemble!. The result is shown
in Fig. 1~a!. The average pressure tensor is calculated w
help of

Pnm5
NkBT

V
dnm1

1

V K (
i

(
j , i

~r i
n2r j

n!Fi j
m L , ~13!

whereFi j 52]/]r jF f f(r j2r i ,ûi ,ûj ) is the force acting on
particle j due to particlei. In theNVT simulation the scalar
pressureP is found to beP'3.02. Now we run a simulation
with variable volume and fixed pressurePi53.02. This re-
sults in a average volume ofV'1000.4. The constant pres
sure simulations with a desired lateral pressurePi are ex-

FIG. 1. N5800 particle at temperatureT51.4. ~a! Average
pressure for aNVT run atV51000.~b! Average volume for aNPT
run atP53.0168.
8-3
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STEUER, HESS, AND SCHOEN PHYSICAL REVIEW E69, 031708 ~2004!
pected to fulfill Pxx5Pyy5Pi . The componentPzz may
differ in the inhomogeneous system with walls. For all o
NPT calculations we found this expectation to be fulfilled
the limit of accuracy, which can be estimated from fluctu
tions of Pxx andPyy .

D. Boundaries

Because of the wall influence the system is no lon
homogeneous. Therefore we have to define some local
servables. For example, we define the densityr(z) or the
local order parameterS2(z) in the following way. The box is
uniformly cut into layers parallel to the wall. Such a lay
may typically have the widthDz50.2 in Lennard-Jones unit
leading to a layer volume ofVL5V(Dz/dz). Then we count
the particles for each layerN(z), which leads after averagin
to the density profiler(z)5^N(z)/VL&. The particles in each
layer can be used to define a local alignment tensorQ(z).
We average its norm to get

S2~z!5KA3

2
iQ~z!i L .

In order to compare the results for the bulk system with th
numbers for the confined systems we should be able to m
sure the bulk density even in the simulation box with wa
We do this by taking into account for the density measu
ment only particles near the middle of the simulation bo
which is far from the walls. The relevant region is chosen
be half of the whole box volume.

IV. RESULTS

Monte Carlo results from theNPT simulations will be
presented for the bulk and the confined system~with homeo-
tropic anchoring and with twisted homogeneous planar
choring!. For all simulations thez length of the simulation
box is set todz515 and the number of particles toN
51000.

A. The bulk system

For the bulk system it would not be necessary to rest
theNPT volume changes to thex andy directions. However
we want to have the bulk behavior only as a reference for
restricted geometries and therefore we perform the b
simulations in the same manner as the simulations w
walls, namely, let the volume breath only in thex and y
directions.

The isotropic-nematic (IN) phase transition is first stud
ied for different isobars with pressure valuesPi50.1, Pi
50.3, Pi50.5, Pi50.7, andPi51.0. Each simulation was
done withN51000 particles in a box with lengthdz515 and
variabledx anddy . In Fig. 2 we show the density and nem
atic order parameter as functions of temperature, which
lowered until one enters the regime of nematic phases. D
ing a cooling series we start a new run~with a slightly low-
ered temperature! with an initial configuration and volume
taken from the end of the former simulation. The transiti
temperatureTIN is found to be between 0.88 and 0.96 d
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pending on the pressure, at which the cooling procedure
performed. We also simulated the heating procedures b
into the isotropic phase and were not able to observe
hysteresis in the accuracy of temperature steps we ch
even if we loweredDT to 0.001. This can be understoo
because of the weakness of the first order phase transi
which is typical for theIN transition@44#. The main result of
these simulations is that for lower pressure values we g
lower TIN .

We gain deeper insight into the phase behavior by stu
ing, in addition, an isotherm. By choosingT51 we will have
to compress our system quite strongly to force a transition
an anisotropic phase. For this temperature we will pres
similar isotherms in a restricted geometry and compare th
with the bulk results in order to gain insight into the influ
ence of confinement on the phase behavior. Some result
the isothermT51 are shown in Fig. 3. We start with a
isotropic fluid at low pressurePi50.1. NPT runs for which
Pi50 are notoriously difficult on account of a dramatic i
crease of volume fluctuations asP goes to zero. The nemati
order parameterS2 as well as the smectic order parameter%1
are small in the isotropic phase, that is, lower than 0.1 for
finite-size system we observe. The average values for s
pressuresPi,1 confirm the results from the isobaric calc
lations for T51 ~Fig. 2!. The isotropic-nematic phase tran
sition takes place atPIN51.7, indicated through a peak i
the energy fluctuationDE, which is proportional to the hea
capacity. The phase transition is accompanied by a ha
visible jump in the number density aroundn50.85 and by a
remarkable jump in the nematic order parameterS2.0.4. At

FIG. 2. Isotropic-nematic phase transition through cooling
different isobars. The number densityn and the nematic order pa
rameterS2 are plotted vs the temperatureT for different pressure
valuesPi .
8-4
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PHASE BEHAVIOR OF LIQUID CRYSTALS CONFINED . . . PHYSICAL REVIEW E69, 031708 ~2004!
PNS57.4 the system enters the solid state. This phase t
sition manifests itself clearly in the peak inDE and a dis-
continuity in n. The order parameters jump to higher valu
too. The smectic order parameter%1'0.3 indicates an in-
crease in positional order. Snapshots of a configuration in
nematic phase atPi56, whereS250.74 and a configuration
in the solid state atPi58, are shown in Fig. 4. In the solid
state configuration, there are no layers perpendicular to tz
direction. Because%1 is calculated assuming formation o
layers perpendicular toz, its value remains small compare
to 1.0. At Pi512 compression terminates and pressure
subsequently released in small steps. The system remai
the solid state even for small pressures. AtPi53 we observe
a small increase in order where the pressure increases.
can be explained as a reorganization of crystal struct
which may happen in finite size and finite ‘‘time’’ Mont
Carlo runs. Indicative for this is also the density jump arou

FIG. 3. IsothermT51 for the bulk system. For compression an
expansion processes~indicated by the arrows! the number densityn,
the order parametersS2 and%1 and the energy fluctuationDE are
plotted as functions of the desired pressurePi .
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Pi53. We observe a strong hysteresis due to solidificati
reflecting a pronounced first-order phase transition. T
solid-nematic and nematic-isotropic transitions occur alm
at the same pressure aroundPi51.4.

B. The confined system with homeotropic alignment

To study the effect of confinement on the phase transiti
observed, we now restrict the geometry by two flat wa
~slab geometry!. We begin by focusing on particle-wall in
teractions favoring homeotropic alignment. This can be m
eled by setting the anchoring functiong(û)51 thereby
eliminating the orientation depending part in the interact
potential~3!. Figure 5 shows the particle density, order p
rameters and energy fluctuation for the corresponding
thermT51. We again start with compressing the system
the isotropic phase. The smectic order parameter incre
already for small pressures, but only slightly, indicating t
formation of layers~see Fig. 6!. The IN phase transition is
smoother now and takes place atPIN51.5, that is, for a
slightly lower pressurePIN compared with the bulk system
For the slab geometry it is easier to form a nematic pha
because at least one layer is formed very early~see Fig. 7!. In
this layer the particle-particle interaction favors a side-s
configuration~all ûj parallel!, resulting in homeotropic align-
ment. A high nematic order in the first layer near the wall
known for Gay-Berne particles too@6#. Therefore, the an-
choring mechanism is responsible for the shiftedNI transi-
tion. During this transition we observe a weak density jum
and large peak in the energy fluctuation. Solidification tak
place atPNS52.5, which is much lower than in the bulk
Layering turns out to be quite pronounced and causes p
tional order. The mere presence of a surface may, unde

FIG. 4. Snapshots of bulk configurations atPi56 ~top!, where
the system is in a nematic phase and atPi58 ~bottom!, where the
system is in a solid state.
8-5
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FIG. 5. IsothermT51 for the homeotropic aligned system. F
compression and expansion processes~indicated by the arrows! the
bulk number densityn, the order parametersS2 and %1 and the
energy fluctuationDE are plotted as functions of the pressurePi .

FIG. 6. Simulations with homeotropic alignment. Density pr
files for Pi50.1, Pi51.0, andPi52.4. The box indicates the re
gion, where the bulk particle density is measured.
03170
vorable geometric conditions~i.e., suitable choice ofdz),
support solidification ifdz is close to, such that, an un
strained solid can actually form. The nematic-solid pha
transition is accompanied by a jump of the particle dens
and the order parameters. The crystal structure can be
from two different perspectives in the snapshots. In Fig
~bottom! the perspective is chosen such that the crystal
structure can be viewed in the middle of the cell. Rotatio
around thez axis would reveal the long-ranged position
order in the regions near the walls. So, the crystal is
perfect, but has some dislocations. To analyze the cry
structure in more detail, we focus on the second and th
layer near the substrate (z527.5) for the finalPi56 con-

FIG. 7. Snapshots of configurations atPi51.5 ~top!, where the
system enters the nematic phase and atPi56 ~bottom!, where the
system is in a solid state.

FIG. 8. Snapshot of layer configurations atPi56. The empty
circles are particles in the second layer, the filled circles are thos
the third layer.
8-6
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PHASE BEHAVIOR OF LIQUID CRYSTALS CONFINED . . . PHYSICAL REVIEW E69, 031708 ~2004!
figuration~Fig. 8!. The layers are found to consist of a tw
dimensional hexagonal structure. For Gay-Berne particle
is already known that the first layer forms a two-dimensio
lattice even in the bulk nematic phase. It is of importance
the onset of orientational order@6#.

For pressuresPi.5 we find that the smectic order param
eter is changing its value from time to time. This is indicati
of a nonequilibrium situation, where the crystal structure
organizes spontaneously. AtPi58 we start expanding ou
system, observing again hysteresis. In the expansion pro
the nematic regime is quite narrow betweenPi51.5 and
Pi51.2, which is very similar to the bulk.

C. The confined system with twisted homogeneous
planar alignment

Finally, we use the slab geometry again, but with differe
anchoring. The anchoring functions are now chosen to

FIG. 9. IsothermT51 for the twisted homogeneous plan
aligned system. For compression and expansion processes~indi-
cated by the arrows! the bulk number densityn, the order param-
etersS2 and%1 and the energy fluctuationDE are plotted as func-
tions of the pressurePi .
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different for the two walls, namely,g1(û)5ûx
2 for the wall at

z527.5 andg2(û)5ûy
2 for the wall at z57.5. This will

favor homogeneous planar alignment at the walls with a
rector field, aligned along thex axis atz527.5 and along
the y axis atz57.5. Therefore the director field is forced t
be inhomogeneous. In the nematic phase, the simulation
nario will be equivalent to a twisted nematic cell witho
external fields. For such optical applications anchoring
fects are very important@15,24#. In Fig. 9, again data for the
isothermT51 are given, where the system is compress
from Pi50.1 to Pi58 and then expanded back toPi50.1.
During this procedure, isotropic, nematic, and solid pha
are found as before. For low pressuresPi,PIN51.5 the
system is in an isotropic phase. The order parameters
crease with increasing pressure for the same reason as
fore. At PIN51.5 the peak in the energy fluctuation indicat
a transition in the nematic phase. Here, the nematic o
parameter seems to remain quite small. The inhomogen
of the director field keeps this global order parameter sm
To find out the real value of the nematic order parameter,
consider local values ofS2(z), as shown in Fig. 10. In the
isotropic phase atPi50.2 the nematic order parameter tur
out to be quite large~almost 0.3!. This is due to the finite
extent of layers into which the box was cut in order to me
sure local values. In average, each nonempty layer cont
about 15 particles. In the nematic phase atPi53, where the
global order parameter was lower than 0.5, we actually fi
local values ofS2(z)'0.7. This number may be even larg
for layers in the immediate vicinity of the walls. AtPNS
54.6 solidification takes place, accompanied by a peak
the energy fluctuation and jumps of the particle density a
the smectic order parameter. Solidification pressure is
tween those observed in the bulk and in the homeotropic
aligned cell. It is more difficult to achieve long-ranged po
tional order if the orientational order is only short ranged d
to the inhomogeneous director field. During some reorga
zation processes the crystal eventually reaches a config
tion, where even the global nematic order parameter has
uesS2.0.6. A snapshot of such a configuration~at Pi56)
together with one of the nematic phase is shown in Fig.
The surprisingly high global nematic order parameterS2
50.7 can be rationalized as follows: In this crystal the rig

FIG. 10. Local nematic order parameterS2(z) for different pres-
sures. AtPi53 the system is in a nematic phase.
8-7
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wall has gained control over almost the whole cell. The
fore, apart from the first three layers near the left wall,
director is homogeneous. Because of a spontaneous bre
symmetry caused by the right wall, its anchoring mechan
dominates the system. This can also be seen in Fig.
where the local azimuthal anglew(z) of the directorn(z),
defined through tan(w)5nx /ny , is plotted for different pres-
sures. A value ofw590° belongs to the left wall atz5
27.5, where the particles are anchored along thex axis, and
w50° belongs to the anchoring at the right wall. In nema
phases~see Pi52 or Pi54) we find a linear tilt, so the
director changes smoothly from one side to the other. Lin
director profiles are known to occur for a lattice model liqu
crystal confined in a hybrid cell@13#. For Pi56 the director
jumps near the left wall and remains homogeneous ot
wise. Expanding the simulation box in small pressure st
back to the isotropic phase we find again a large hystere
This time, we observe a single solid-isotropic transition
PSI51.2. During this transition the peak of the energy flu
tuation as well as the jump in the particle density are v
sharp. The nematic phase only occurs during the comp
sion process, such that we have a monotropic nematic ph

FIG. 11. Snapshots of configurations atPi53 ~top!, where the
system is in a nematic phase and atPi56 ~bottom!, where the
system is in a solid state.

FIG. 12. Twist of azimuthal anglew of the directorn(z) along
the cell for different pressures.
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m
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V. CONCLUDING REMARKS

We observed compression and expansion processe
constant pressure Monte Carlo simulations for a bulk sys
and in slab geometries with different anchoring mechanis
at the solid walls. For a summary, we compile in Table
pressures at which phase transitions occur atT51. In all
three cases the pressure regime for the nematic phase is
narrow in the expansion process or even vanishes~see Figs.
3, 5, and 9!. This is because of a large hysteresis, which
typical for first-order phase transitions. The solid state her
very stable. The confinement of flat walls forces the ph
transition to be shifted compared with the bulk, especia
for solidification and melting. This can be understood b
cause of the positional order, that the wall brings into t
system. A first layer beside the wall is formed very early a
in this layer it is easy for the system to achieve highly o

FIG. 13. Comparison of nematic (S2) and smectic (%1) order
parameters as function of the pressure for the isothermT51 and
different kind of geometries. Only the compression process
shown.

TABLE I. Comparison of phase transition pressures of the i
thermT51 for different kind of geometries.

Twisted
Homeotropic homogeneous planar

Bulk anchoring anchoring

PIN 1.7 1.5 1.5
PNS 7.4 2.5 4.6
PSN 1.5 1.5
PNI 1.3 1.2
PSI 1.2
8-8
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dered states. Figure 13 shows the nematic and smectic o
parameter for the compression process each in separate
tures for better comparison. The isotropic-nematic transit
is only slightly shifted by the walls towards smaller pre
sures, the nematic-solid transition is clearly shifted, es
cially for the homeotropic alignment. In the case of twist
homogeneous planar alignment we found a linear relat
ship between the azimuthal angle of the director and thz
coordinate in the simulation box~Fig. 12!. A detailed analy-
sis of the rotating director along the cell including estima
for the twist elastic constant will be presented elsewhere

The knowledge of the static properties of the bulk flu
and the behavior of the liquid crystal in the vicinity of wal
as presented here is a prerequisite for the analysis of dyn
phenomena in confined and in mesoscopically structured
tems. It is desirable to study via molecular dynamics sim
lations the influence of walls on the translational and ro
l.

er

st

.

s.

tt

E

e

ys

03170
der
ic-
n
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-

s

ic
s-
-
-

tional diffusion and to compare it with results inferred fro
NMR experiments@45#. Nonequilibrium molecular dynamics
simulations of the viscous properties as calculated previou
for ellipsoids and Gay-Berne particles@46# should be per-
formed for the model liquid crystal used here. Furthermo
an extension of the present study to fluids of Janus parti
@47# is desirable.
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